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Recently, there have been several suggestions that weak Kerr nonlinearity can be used for generation of
macroscopic superpositions and entanglement and for linear optics quantum computation. However, it is not
immediately clear that this approach can overcome decoherence effects. Our numerical study shows that
nonlinearity of weak strength could be useful for macroscopic entanglement generation and quantum gate
operations in the presence of decoherence. We suggest specific values for real experiments based on our
analysis. Our discussion shows that the generation of macroscopic entanglement using this approach is within
the reach of current technology.
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Strong nonlinear effects, if available, could be very useful
for the generation of macroscopic superpositions and en-
tanglement and for quantum information processing. For ex-
ample, it is well known that macroscopic superpositions and
entanglement could be generated in strong Kerr nonlinear
media �1�. An optical quantum computer could be realized if
strong nonlinearity was available �2�. However, it is ex-
tremely hard to obtain such strong nonlinear effects using
nonlinear media. Nonlinear effects in existing media are ex-
tremely weak compared with the required level for the gen-
eration of macroscopic superpositions and entanglement or
for quantum information processing.

Recently, it was suggested that weak Kerr nonlinearity
can still be used for the production of macroscopic superpo-
sitions and entanglement �3,4� and for linear optics quantum
computation �5�. Nemoto and Munro showed that weak non-
linearity could be used to generate entangled states and used
for linear optics quantum computation �5�, which could also
be used for the generation of macroscopic superposition
�6,7�. A key element of their scheme is a cross-Kerr interac-
tion between a coherent state and a single-photon qubit. The
phase of the initial coherent state changes by a certain
amount when the qubit is �1�, while it remains the same
when the qubit is �0�. An important point of this scheme is
that the amplitude of the initial coherent state should become
arbitrarily large to make the required nonlinear strength ar-
bitrarily weak. The initial coherent state can easily gain an
adequate amount of phase shift by �1� when � becomes very
large. This effect could be used to generate quantum en-
tanglement with a very weak nonlinearity. The other schemes
based on the single-mode Kerr effect by van Enk �3� and
Jeong et al. �4� use implicitly the same principle of using a
coherent state of a large amplitude: all these schemes �3–5�
use initial coherent states of large amplitudes in order to
make the required separation between the component coher-
ent states in the phase space with weak nonlinearity �8�.

However, decoherence effects during the entanglement
generation process in nonlinear media have not been inves-
tigated in these references �3–5� in spite of the uncertainty of
the validity of such techniques under a real dissipative envi-
ronment. As was mentioned, the amplitude of the initial co-

herent state must increase at the cost of decreasing the re-
quired nonlinear strength �or required interaction time in a
nonlinear medium�. The requirement of a large initial ampli-
tude might reduce the coherence time of the evolving state;
i.e., an entangled system with a large initial amplitude might
lose its quantum coherence more rapidly than an entangled
system with a small initial amplitude did. It is thus unclear
whether the decoherence effects �particularly dephasing�
could be overcome by this approach when generating en-
tanglement and operating quantum gates. In this Brief Re-
port, to answer this question, we investigate the effect of
decoherence when Nemoto and Munro’s idea �5� is applied
to Gerry’s scheme �6� to generate a macroscopic superposi-
tion �so-called Schrödinger cat state� in a dissipative envi-
ronment.

The interaction Hamiltonian of cross-Kerr nonlinearity
between modes 1 and 2 is HK=��a1

†a1a2
†a2, where a�a†� rep-

resents the annihilation �creation� operator. The interaction
between a coherent state ���2 and a single-photon qubit—
e.g., ���1= ��0�1+ �1�1� /�2—is described as

UK�t����1���2 = eiHKt/� 1
�2

��0�1 + �1�1����2

=
1
�2

��0�1���2 + �1�1��ei��2� , �1�

where �0� ��1�� is the vacuum �single-photon� state, � is the
amplitude of the coherent state, and �=�t with the interac-
tion time t. If � is � and one measures out mode 1 on a
superposed basis ��0�± �1�� /�2, a macroscopic superposition
state ��±�= ����± �−��� /�M± is created, where M±

=2±2 exp�−2���2�. A macroscopic entanglement can be sim-
ply generated at a beam splitter with such a state.

Using the dual-rail logic, where the logical qubit basis is
defined as �0L���1� � �0� and �1L���0� � �1�, the above pro-
cess can be efficiently realized. For example, as shown in
Fig. 1, Gerry’s scheme �6� can be directly linked to Nemoto
and Munro’s idea �5� so that weak cross-Kerr nonlinearity
can be used with a single photon, a coherent state, two pho-
todetectors, and two beam splitters to generate a macroscopic

PHYSICAL REVIEW A 72, 034305 �2005�

1050-2947/2005/72�3�/034305�4�/$23.00 ©2005 The American Physical Society034305-1

http://dx.doi.org/10.1103/PhysRevA.72.034305


superposition. If detector A �detector B� clicks, a macro-
scopic superposition state ��−����+�� is obtained at mode b
in Fig. 1. Remarkably, it is clear from Fig. 1 that this ap-
proach is robust against the inefficiency of the single-photon
source, loss of the single photon, and inefficiency of the
photodetectors. Those factors will cause the photodetectors
to be silent, and such cases can simply be discarded. There-
fore, these will only make the deterministic property of the
scheme nondeterministic but will not affect the quality of the
obtained macroscopic superposition state.

The main problem here is that a very large nonlinear
effect—i.e., a very large �—is required to gain a large sepa-
ration between two coherent component states. It was
pointed out that an optical fiber of about 3000 km is required
for �=� for an optical frequency of �	5	1014 rad/sec
using currently available Kerr nonlinearity �9�. In such a
case, the state after the nonlinear interaction will be com-
pletely decohered because of the significant losses in the fi-
ber. In order to circumvent this problem, a large initial am-
plitude � can be used with a short interaction time t. If � is
very large, the same amount of separation can be obtained in
the phase space even though ��=�t� is much smaller than �.

Now we consider the decoherence effects in the Kerr me-
dium. The decoherence effects can be induced by solving the
master equation �12�

�


�t
= Ĵ
 + L̂
; Ĵ
 = �a
a†, L̂
 = −

�

2
�a†a
 + 
a†a� ,

�2�

where � is the energy decay rate. The formal solution of the

master equation �2� can be written as 
�t�=exp��Ĵ+ L̂�t�
�0�,
which leads to the solution for the initial element ���
��:

exp��Ĵ + L̂�t����
�� � D̃�t����
��

= exp�−
1

2
�1 − e−�t�����2 + ���2� + ��*�

	�A��
A�� , �3�

where A=e−�t/2.

We numerically assess the decoherence effects as follows.
As we have explained, a photon loss at mode 1 �modes a and
a� in Fig. 1� will simply cause the success probability to be
less than 1. However, energy loss of the coherent state part
�mode b in Fig. 1� in the nonlinear medium should be seri-
ously considered since it will cause decoherence �dephasing�
of the obtained state. Note that the average energy loss per
time increases as the initial energy gets larger. This will
cause a more rapid destruction of quantum coherence for a

large �. The decoherence process �D̃� will occur simulta-

neously with the unitary evolution by the Kerr effect �Ũ� of
the input state by the interaction Hamiltonian HK. This pro-

cess may be modeled as follows. One may assume that Ũ
occurs for a short time t, and then D̃ occurs for another t.

In other words, Ũ and D̃ continuously take turn for a short
time in the nonlinear medium. By taking t arbitrarily small,
one can obtain a good approximation of this process for a
certain time t�=Nt�, where N is an integer number. Let us
set �=�t=� /N; then, a larger N will result in a better
approximation.

We now use our model to analyze the behavior of the
coherent state interacting with a logical qubit in the Kerr
medium shown in Fig. 1. The first beam splitter BS1 and the
single photon prepares the logical qubit state ��0L�
+ �1L�� /�2���1�a�0�a�+ �0�a�1�a�� /�2. The total initial state
after BS1 but before the Kerr interaction in Fig. 1 is


�t = 0� =
1

2
��0L�
0L� + �0L�
1L� + �1L�
0L� + �1L�
1L�� � ���
�� .

Let us fist consider the evolution of the second term
�0L�
1L� � ���
��. After time t�=Nt� in the nonlinear me-
dium, it evolves to

D̃�t�Ũ�t��N�0L�
1L� � ���
�� = C�0L�
1L� � �A��
A�ei�� ,

�4�

where Ũ�t�
�UK�t�
UK
† �t� and

FIG. 2. This figure shows that our approach gives a very good
approximation throughout the whole range of � that we consider in
this paper. The coherence parameter �C� for a separation ��ei�t−��
=2�0=6 has been plotted for �=300 �solid line�, �=1000 �dashed
line�, and �=10000 �double-dot-dashed line�.

FIG. 1. A schematic of Gerry’s scheme �6� combined with
Nemoto and Munro’s idea �5� using weak Kerr nonlinearity.
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C = exp�− �2�1 − e−��t/N���
n=1

N

exp�− ��t/N���n−1�

	1 − exp�I�n�t/N���� , �5�

where �=� /� and � is assumed to be real without losing
generality. Here we have defined C as the “coherence param-
eter” since it determines the degree of decoherence �dephas-
ing� for the resulting macroscopic superposition state. The
amplitude parameter A has been defined to quantify the av-
erage energy loss. The second beam splitter BS2 and detec-
tors A and B in Fig. 1 perform a measurement onto the su-
perposed basis states ��0L�± �1L�� /�2. The macroscopic
superposition state obtained by the measurement is


±�t� = N±��A��
A�� ± C�A��
A�ei�� ± C*�A�ei��
A��

+ �A�ei��
A�ei��� , �6�

where N± are the normalization factors. State 
+�t��
−�t�� is
obtained when detector B �detector A� clicks in Fig. 1. If
�C�=1 �and A�0�, the state 
±�t� is a pure superposition of
coherent states, while if �C�=0, it is simply a statistical mix-
ture of two coherent states. Let us assume that one wishes to
gain �=� when the amplitude of the initial coherent state is
�0 so that a macroscopic superposition state ��0�± �−�0� �un-
normalized� could be obtained �without decoherence�. In this
case, an interaction time t=� /� is required. However, if the
amplitude of the initial coherent state is ����0�, the required
interaction time t is obtained from the equation, ��ei�t−��
=2�0, which can be derived from a simple geometric analy-
sis. The required interaction time is then t�� ,�0 ,��
=cos−1�1−2�0

2 /�2� /�.
Note that the state �6� can be changed into a symmetric

form in the phase space—i.e., A�→� and A�ei�→−�. This
can be done by applying the displacement operator D�x�
=exp�xa†+x*a�, where a and a† are annihilation and creation
operators. The displacement operation can be performed us-

ing a strong coherent field �an additional local oscillator� and
a biased beam splitter. This may be required for quantum
information processing but it does not make any essential
difference in our discussions.

In our numerical calculation, we have chosen
N=106—i.e., �=� /106. It is clear from Fig. 2 that this
value gives a very good approximation for the whole range
of � in our study because �C� rapidly converges as N in-
creases. Our numerical results can be summarized as follows.
The first effect is that the same amount of separation between
the coherent states is gained in a shorter time for a larger
initial amplitude, which we already learned from Nemoto
and Munro �5�. The second effect is that decoherence occurs
faster as the initial amplitude gets larger as shown in Fig. 3,
which could be expected intuitively. Our observation is that
the first effect overcomes the second one so that decoherence
effects diminish as the initial amplitude gets larger for the
same amount of separation: Figure 4 shows that the coher-
ence parameter �C� increases as the initial amplitude � in-
creases for the same separation. In what follows we present
the detailed values obtained from our numerical study. One
may need an optical fiber of about 3000 km for �=� using
currently available Kerr nonlinearity �9�. We choose �
=0.0125 that the amplitude will reduce as A	0.533 for 15
km while �=� is obtained for 3000 km. This corresponds
0.364 dB/km of signal loss, which is a typical value for
commercial fibers used for telecommunication and easily
achieved using current technology �10,11�. Note that signal
losses in some pure silica core fibers are even less than
0.15 dB/km �11�. If the required amplitude for the obtained
cat state is �0=3 and the initial amplitude is also �=3 �so
that �=��, the amplitude parameter is A	2.7	10−55; i.e.,
the resulting state will be virtually the vacuum.1 If �=300,
the amplitude parameter is A=0.45 so that the “effective”
amplitude �A�−A�i�� /2 of the cat state calculated from the
separation between the two coherent states is 	1.35. In this
case the coherence parameter is �C�	0.047; i.e., the state is
almost completely decohered. If �=3000, the effective am-

1In this case ��=�0=3� a nonlinearity 	104 times larger than the
currently existing value is required for A�0.9 and �C�	0.8.

FIG. 3. The decrease of coherence parameter �C� against time t.
�=3 �solid line�, �=30 �dashed line�, and �=300 �dotted line�.
Decoherence occurs faster as the initial amplitude gets larger. � /�
=0.0125.

FIG. 4. The coherence parameter �C� against the initial ampli-
tude � for the same separation ��0=3�. The decoherence effect
diminishes as � gets larger. See text for details.
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plitude is 	2.76 and the coherence parameter is �C�	0.43. If
�=30 000, the effective amplitude is 	2.97 and the coher-
ence parameter is �C�	0.91; i.e., the resulting state will be
close to a pure macroscopic superposition state. Therefore, in
order to obtain �C��0.9 for the �effective� amplitude ���
	3 of the cat state, one needs the initial coherent state of
�=30 000. In this case, an optical fiber of only about 190 m
will be required.

One can simply produce macroscopic entanglement using
an additional 50:50 beam splitter on the state produced in
Fig. 1 �13�. The state �6� after this additional beam splitter
becomes


±
E�t� = N±���,��
�,�� ± C��,��
��,��� ± C*���,���
�,��

+ ���,���
��,���� , �7�

where �=A� /�2, ��=A�ei� /�2, and �� ,��= ������. Apply-
ing displacement operators D1�x�D2�x�, this state can be
transformed to a symmetric form as


±
E��t� = N±���,��
�,�� ± C���,��
− �,− �� ± C�*�− �,− ��

	
�,�� + �− �,− ��
− �,− ��� , �8�

where x=−��+��� /2, �= ��−��� /2, and C�
=C exp�2A2�2i sin ��. Note that the states �7� and �8� contain
the same amount of entanglement because local unitary
transformations do not increase or decrease the amount of
entanglement. The state �8� can be represented in a 2	2
Hilbert space by defining the basis as ��+� , ��−��. The state


+
E� in Eq. �8� in the 2	2 Hilbert space spanned by the new

basis is then


+
E� =

1

K + 2R + Z�
K V V D

− V R R W

− V R R W

D − W − W Z
� , �9�

where K=M+
2�2+C�+C�*�, V=−M+

�M+M−�C�−C�*�, D
=M+M−�2+C�+C�*�, R=M+M−�2−C�−C�*�, W
=M−

�M+M−�C�−C�*�, and Z=M−
2�2+C�+C�*�. We have

numerically calculated the negative eigenvalue �− of the par-

tial transpose for 
+
E� as a measure of entanglement �14�. In

Fig. 5, one can clearly see that the degree of entanglement
E�=−2�−� increases as the initial amplitude becomes larger.

Our discussion clarifies that an inefficient single-photon
source, two inefficient detectors, and weak nonlinearity,
beam splitters, and a coherent state source are required re-
sources for generation of macroscopic entanglement, and
such a method can overcome the decoherence effect. In the
same manner, weak nonlinearity can also be used for quan-
tum gate operations �5� in the presence of decoherence.
However, it should be noted that some effects in the nonlin-
ear media such as phase noise may not be negligible in real
experiments. It is also a separate problem to investigate the
decoherence effect in nonlinear media for the other schemes
�3,4� with weak nonlinearity.

Note added. Recently, an update �15� to Ref. �5� was pub-
lished, where the authors discussed decoherence of qubits for
their computation scheme.
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